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Total progeny in a critical age-dependent

branching process with immigration

by Howard Weiner

1, Introduction.

At time t = 0, a renewal process starts with I.I.D. interarrival
times having non-lattice distribution function Go(t), G°(0+) = 0. Thesge
epochs are the arrival times of new-born immigrating cells, where k cells

arrive with probability Pro’ and let, for 0<s <1,

o«
k
(1.1) h (s) = Zp s
° =0 ¥ '
and denote
[- ]
(1.2) 0<Bwmwh'(l) = L kp, <o,
o k=1 ko

Each immigrating cell, independent of any other cells, initiates an
age-dependent branching process [3] with cell lifetime distribution G(t),

G(0+) = 0, and non-lattice. The offspring generating function is

[ ]
h(s) 2 £ pksk. Assume that each initiated branching process is critical,
0

that {is,
[ _J
(1.3) (1) = T kp, = L.
k=1
- . __;“ T PO 21
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Denote by

(1.4) Z(t) = the total number of cells born by t arising from all

cells immigrating by t and their respective initiated critical

age-dependent branching processes.

The purpose of this paper is to obtain an explicit limit law for
the Laplace transform of Z(t) by using the corresponding result for the
Galton-Watson or discrete time process obtained by Pakes [6] and a series

of approximations.

2. Integral Equations and Approximations.

Assume that at t = 0, there are no cells present due to immigration,

and hence no new cells to initiate a branching process.

Let
(2.1) N(t) = total number of cells born by t in a critical age-
dependent branching process as given by (1.3), (1.4).
Define
(2.2) #(0,5) = E exp-(6N(t)).
Then
(4
(2.3) 00,8) = o1 - ce) + [ ncho,c-u))a0(w)] |
0
2
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Let

(2.4) F(O,t) = E exp-(0Z(t)),

where 2Z(t) 1is as in (1.4).

Then for t > 0, arguing as in [4],

t
(2.5) F(o,t) = 1 - Go(t) + _foho(é(e,t-u))r(o.c-u)dco(u)

and F(e,0) = 1,

Let

t

(2.6) Qm_l(o,t) - e'°[1 - G(t) + Jpoh(in(o,t-u))dc(u)]. a> 1,

and  ®_(9,t) % 1.

Let
(2.7) 2(0,ntl) = e °h(#(0,n))
and #0,0) = 1.

for n> 1




Let a > O be & constant. Define the approximants, forn2 1,

t
(2.8) ©.t) = 1 - G_(t) + J'ohoa[m](o,c-u))pn(o,c-u)dco(u)

"(n+1)
a_nd Po(o,t) &1,

Simflarly, let

2.9 P(O,(ntl)) = ho(Q(O.[M]))P(O»n) for n> 1,
and P(6,0) =1,

which implies
n
P(9,ntl) = N h (8(0,(ma])).
m=1
We note the relationships ([6], lemma 3 and also p. 285)
(2.10) to,t) § &#(9) as t ~ o (see also [5], p. 228)
(2.11) #(0,n) | #(9) as n =,
where #(¢) is the transform of a bona fide random variable,

(2.12) a(l - #@/nd)) <K< =, all n,

where Kk 1is & comstant.




3. Limit Theorems.

Theorem 1., Assume that

(3.1) 0<h(0)<«<1, ho(O) <1,

B'(1) = 1, 0 < R"(1) <=, h!(1) = B,
Denote v =3h"(1), and o = B/y.

Then for all 8> 0, a> 0,

(3.2) lim P(—%,n) = (sech a,/vyo )O/a .
n

n -

Proof. We will indicate the adaptation of the method of proof of

Pakes [6] applied to this more general model, as Pakes' proof applies only
P

to the case where the immigration mean interarrival time = mean lifetime = 1.




The model here corresponds to the case where the immigration

iaterarrival time is a > 0, and the mean lifetime is 1.

Case I. a>1,

Using Pakes' notation ([6] eq. 20,p.285) for our zase,

n
(3.3) P(0,(nt1)) = I h (2(0,(ma])).
m=1

Since ([6] eq. 21, p. 285)
80,k) | #(6) ask-~w,

we may write, via ([6] eq. 30, 31, p. 285), where e = Oln2

n
(3.4) log P(6 ,(n+1)) = -p T (I'Q(Ons[ml])+k(n)(0)
m=]1

n
where R(“)(e) “*Qagsn—~oif I (I-Q(Gn.[m]) is bounded in n.
=]

Writing

n n
(3.5) =B L (1-8(0_,[ma]) = -p T (1-2(8 )
o=l ol

n
+ "21(’(011’ [ma) )'.(on)) ’

and by Pakes ([6] eq. 31, p. 287),

n
(3.6) -8 T (1-80,)) ~-8lo/n)*/2,
mel

y
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Using the proof of Lemma 4, pp. 286-287 and p. 288 of [6], one obtains

that, as n—~ ®

n n -6[ma]/n 1 -Sax
3.7) BE (¥, -3 ~B% 5 = ~Bg [T
(3.7) 9m-1( ( n (ma]) (Qn)) Y n mEl‘::::ETE;T7; x5 I “Fax 9%

0 l+e

Hheto,_ following [6], we have denoted

(3.8) 6= 2 Jyo .
Since
1 -6ax -da .
(3.9) 6 .r = -bax dx = = é log C}ig——> ’
0 l+e

eq. (3.4) = (3.9) yield the result for the case a 2> 1.

Case II. 0 <a<l.

Obgerve first that if 1/a is a positive integer, that

1/a

[nal
(3.10) P(O,ntl) = [kul ho(Q(o,k))] )

If a = L/r, where 0 < £ < r are relatively prime positive integers,
then it can be seen that

na]

(3.11) P(O,n+l) = ho(uo,k))> )
k=

1
{n/r]

0 h (#(0,k0)).
k=1

Now let n ~ ® {n (3.10), (3.11), replacing @ by Olnz. Apply Pakes'
limit result ([6], p. 285) to the right side of (3.10), and to the first

T e gg——— e o




* product on the right of (3.11). Apply the result of Case I above to
the second product on the right of (3.11). This proves Case II for
0<a<1l, arational.

Suppose 0 < a < 1 is arbitrary. Choose a sequence of rationals
{at} such that a_ - a.

By the (uniform) continuity and monotonicity in a of the product
for P(Q,ntl) given on the right side of (2.9), it follows that one can
choose the convergent sequence of rationals [ar} such that for all

r> Ro, n> No, either (by a slight expansion of notation)

(3.12)  2(0/n’,n,8)) < P®/n’,n,8) < PO/nl,nsa )

or

P(O/nz,n,ar+1) < P(O/nz,n,a) < P(O/nz,n,ar).

Now let n ~ =, then r = ® in (3.12), using the continuity of the

function on the right side of (2.2). This suffices for the result.

Lemma. Let Go(t:) and G(t) be two distribution functions such that
Go(OO-) = G(O+) = 0
and

..
0<m -J tdG(t) < =,

0< m, = Iotdcc(c) < ®,

=
Let a®a/a,.

g
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when n= [Eﬂl_‘el;i
— m

Assume
0 <I t dG(t) < =

0<J' t2de () < w.
0 [¢]

Let Gor(t) and Gr(t) denote the r-th convolutions of Go and G, respectively.

Let G % H(t) denote the convolution of G and H. Then, uniformly in k,

0<k<n,

(3.13) Lw Gy * 6, L (£) =0

t -~

for all ¢ > 0,

when n= FM]
E— L m,

(3.14) 1m (1 - Gl1a] * G, n_k(c)> =0

t - @

for all ¢ > 0.
2

Proof. Let {XL} be I.I.D. each with distribution G.
Let {Yl.} be I.I.D. each with distribution G_, and independent of {x‘}.
Define

{ka]
(3.15) z (X,-EX,) + 2 (y -EY )>

Then to prove (3.13), (3.14) together, i. suffices to show that
(see [2])
(3.16) nl_i.m.P(ls kl > 3em,) = 0,

uniformly in k, 0< k < n.




T epee -

By Chebyshev's inequality,

[kalVar X, + (n-k)Var Y, . {na)Var X + n Var ¥

1D Pl il > 3em) < (3em,n)? ~ (Gemm)?
™ €
which goes to zero independent of k, as n -~ «.
Note: By using the techniques of [1], it may be possible to relax the

second moment conditions and still obtain that P[ISn | > €] goes to zero

yk

uniformly in k, as n - ®, but this has not been done.

Theorem 2. Assume the conditions of Theorem 1 and the lemma. Then

om,/m

1%
lim F(-Qz-,:) - [sech ﬁ] .
t - t o]

Proof, The proof is by use of approximants, writing

(3.18) F(@,t) - P(6,(n+l)) = F(O,t) - F(m_l)(O,c) + F(m_l)(e,t) - P(9,(n+l)).
t
(3.19) F(m_l)(o,t) - F(O,t) = Io[ho(é[m](Q,C-u))Fn(G,t-u)

- ho(Q(O,t-u))Fn(O,t-u) + ho(é(e,t-u))Fn(o,c-u)

- ho(Q(O,t-u))F(O.t-u)]dGo(u).

10
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The proof will be divided into several claims, using an abbreviated
notation. Only the proofs of €laims IV, VIII will be given, since the

others either follow similarly, or are similar to those given in [2], [6].

(3.20) Claim I: Qn -¢&>0, allt, o, n.

ey
(3.21) Claim 1I1: F(n+l) -F>0, allt, 8, n.
. - - & - .
(3.22) Claim III: é[na](e,t) $(o,t) < (1 (0))u{na](t)
n
5 . . - - L
(3.23) Claim IV: Fn+l Fn < mo(l 2(0)) kllc{kal * Go,n+l-k(t)
+ Go’“+1(c).

Proof. By (3.19),
(3.24) Fn+1 - F = IFn (ho(Q[na]) - ho(é)) + Jho(i)(Fn-F).

Applying the mean value theorem to the first term on the right of (3.24),

bounding Fn by 1 in the integrand yields

(3.25) F -F<L I(Fn-F)dGo + mOC

1 * Go(t)-(l—Q(Q)).

(na]

Iteration of (3.25) and using F)-F=1-F<1in the last step yields

the result.
(3.26) Claim V: Qn(e,t) - §(o,n) >0, alln, e, t,

(3.27) Claim VI: Fn(O,t) - P(@,n) > 0, alln, o, t.

11
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(3.28)  Clatm VII: # . - #(=+1) < (1-6,(t))(1-2(0)), al1 n > 0.

(3.29) Claim VIII:
n~1

F 100.6) - P@,n+1) < c(l—@(0)>'kfl(1'°[ka]) * CGy,n-k ()

tel-6) v o (n),

where ¢ = max(l,mo) and G-a 0 for > 0,

Proof. By the expression

(3.30)  F_ - P(at1) = _[hoa[m])-(pn-p(n))dco

+ ey - h, (#([nal))]de,
+ (1-G(£)) (1-p(n)),
and the mean value theorem, (3.30) yields

(3.3 F_. - (e _gj(rn-pm))dco +a f“’[m] - #((na)))dg, + (1-6_(t)).

By (3.28) and (3.31),

»
(3.32) Fn+l = P(ntl) < j(Fn-P(n))dGO + mo(l - G[na]-l) * Go(t) + (I-Go(t)).

Iteration and use of the facts that §F

1 - P(1) =~ 0 and '2 -P2)<1. Go(t)
yield the resuilt.

12
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We may now complete the proof of Theorem 2.

Claims IV, VIII yield the inequalities

n
(3.33) <G, L1 (6) = @ (1-8(@,6)) £ Gy % G Ly 1 (6)

k=1l
n-1
< F(8,t) - P(8,nt+l) < C(1~¢(9))k51(1-clka]) * Go,n-k
+ c(l-Go) * Go,n-l'
t(lte)
Now, set n= [ o ] in the right (left) inequalities, respectively.

G

o

Substitute anz for @ 1in (3.33). Then, since from (2.12),

1- #e/n) <X

for some constant K, let t -, The lemma, via uniformity of approach of
the summands to zero, yields that the right and left sides of (3.31) go to

zero. Now Theorem 1 completes the proof.

13
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